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Despite calls for greater use of randomized control trials (RCTs) to evaluate the
impact of conservation interventions; such experimental evaluations remain
extremely rare. Payments for environmental services (PES) are widely used to slow
tropical deforestation but there is widespread recognition of the need for better evi-
dence of effectiveness. A Bolivian nongovernmental organization took the unusual
step of randomizing the communities where its conservation incentive program
(Watershared) was offered. We explore the impact of the program on deforestation
over 5 years by applying generalized additive models to Global Forest Change
(GFC) data. The “intention-to-treat” model (where units are analyzed as random-
ized regardless of whether the intervention was delivered as planned) shows no
effect; deforestation did not differ between the control and treatment communities.
However, uptake of the intervention varied across communities so we also
explored whether higher uptake might reduce deforestation. We found evidence of
a small effect at high uptake but the result should be treated with caution. RCTs
will not always be appropriate for evaluating conservation interventions due to eth-
ical and practical considerations. Despite these challenges, randomization can
improve causal inference and deserves more attention from those interested in
improving the evidence base for conservation.
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1 | INTRODUCTION

Following calls for improvements in the quality of evidence
underpinning conservation interventions (Ferraro &

Pattanayak, 2006), there are a rapidly growing number of
robust conservation impact evaluations. Impact evaluation
seeks to establish the extent to which an outcome can be
attributed to the intervention itself, rather than to confound-
ing factors (Baylis et al., 2016; Ferraro & Hanauer, 2014).
Careful statistical analysis is increasingly used for construct-
ing counterfactuals (what would have happened in the
absence of the intervention). For example, statistical match-
ing is now quite widely used (e.g., Eklund et al., 2016;

Data accessibility: Data and code to reproduce analysis in this paper are
available here: doi.org/10.6084/m9.figshare.7418264. The full details of a
baseline and endline social survey of participants and non-participants in
Watershared from control and treatment communities (a small amount of
data from this is used in the paper) is publically archived (Bottazzi
et al., 2017).
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Rasolofoson, Ferraro, Jenkins, & Jones, 2015; Sills et al.,
2017) while other quasi-experimental methods which require
particular conditions such as instrumental variables (Sims,
2010) or regression discontinuity (Alix-Garcia, Mcintosh,
Sims, & Welch, 2013), have spread more slowly. Random-
ized control trials (RCTs) where units are experimentally
allocated to treatment or control reduce the influence of con-
founding factors (Ferraro & Hanauer, 2014) and therefore, at
least in theory, greatly improve the quality of causal infer-
ence. RCTs at the field scale have been the mainstay of
applied ecology for decades, however are vanishingly rare at
the landscape scale despite calls for wider use (Ferraro,
2011; Miteva, Pattanayak, & Ferraro, 2012; Pattanayak,
Wunder, & Ferraro, 2010; Samii, Lisiecki, Kulkarni, Paler, &
Chavis, 2014).

The rarity of RCT in evaluating the impact of large-scale
conservation interventions can be attributed to the numerous
practical and ethical considerations involved (Baylis et al.,
2016; Pynegar, Jones, Gibbons, & Asquith, 2018). One of
these is scale itself: it clearly would not be feasible to ran-
domly allocate Protected Areas in a landscape. Furthermore,
despite the enthusiasm with which RCTs have been pro-
moted in some fields such as development economics, inter-
pretation is not always simple and randomization does not
relieve one of the needs to consider covariates and con-
founding factors (Deaton & Cartwright, 2018). Finally,
RCTs require involvement of researchers throughout the
implementation phase; they cannot be conducted post-hoc.
All are likely to be important reasons for the limited number
of RCTs evaluating large-scale conservation interventions.

A useful distinction in any impact evaluation is between
“effectiveness” and “efficacy” (how interventions work in
real-world practice versus under ideal implementation;
Pullin & Knight, 2001). Effectiveness may be low not
because the intervention lacks efficacy but because imple-
mentation, uptake and adherence are imperfect
(Glennerster & Takavarasha, 2013). When analyzing RCTs,
including the outcomes for individuals as randomized in
“intention-to-treat” (ITT) estimates is widely considered
most appropriate for evaluating real world effectiveness
(Gupta, 2011). Where uptake is incomplete, examining out-
comes according to uptake and adherence can be informa-
tive, especially for exploring the potential efficacy of new
approaches (Glennerster & Takavarasha, 2013; Ten Have
et al., 2008). For example an “as-treated” impact estimate
(where units are analyzed as they were treated rather than as
they were randomized) can be useful (McNamee, 2009).

Payments for environmental services (PES, also known
as Payments for Ecosystem Services; Wunder, 2015), which
incentivize land managers to provide ecosystem services,
have been promoted to slow tropical deforestation since the
late 1990s (Landell-Mills & Porras, 2002; Sánchez-Azofeifa,
Pfaff, Robalino, & Boomhower, 2007). While strong evi-
dence on PES impacts is limited (Börner et al., 2017; Miteva

et al., 2012, Samii et al., 2014), approaches such as statistical
matching have been quite widely used to evaluate deforesta-
tion impacts for example in Costa-Rica (Robalino & Pfaff,
2013) and Cambodia (Clements & Milner-Gulland, 2015).
Regression discontinuity was recently used to evaluate the
impact of payments on land management actions in Mexico
(Alix-Garcia et al., 2018). The only RCT to evaluate PES
(Jayachandran et al., 2017) suggested—for high forest pres-
sure, low opportunity cost, and the requirement to enroll all
of one's forest land—that a PES scheme in Uganda cost-
effectively reduced deforestation over a two-year period.
Given the heterogeneity of PES impacts across varied set-
tings, and few evaluations relative to the exploding number
of programs (Salzman, Bennett, Carroll, Goldstein, & Jen-
kins, 2018), more such RCTs would be valuable.

In 2010, the Bolivian nongovernmental organization
Fundación Natura Bolivia (Natura) and five municipal gov-
ernments initiated an RCT of their conservation incentive
program known as Watershared (Pynegar et al., 2018).
Watershared makes in-kind compensations to incentivize
landowners to cease deforestation and cattle grazing on
enrolled parcels. A total of 129 communities were randomly
allocated to treatment or control (offered agreements or not).
We investigate the effectiveness and efficacy of Water-
shared at reducing deforestation, over 5 years, by applying
generalized additive models (GAMs) to global forest change
(GFC) data (Hansen et al., 2013). We undertake a standard
ITT evaluation to explore effectiveness at the level of ran-
domization regardless of uptake of Watershared agreements
in individual communities. We further quantify efficacy by
evaluating the effect of uptake on deforestation (c.f. “as-trea-
ted” analysis). Throughout, we control for factors that can
relate to both uptake and deforestation, including propensity
to enroll (endogeneity), and consider the potential influence
of unobserved confounding factors.

2 | METHODS

2.1 | Study context

Since 2003, Natura's Watershared program in the Bolivian
Andes has used in-kind incentives to encourage land owners
to conserve forests, to preserve exceptional biodiversity,
store carbon, and ensure locally valued ecosystem services
(Asquith, 2016). Watershared is not a PES scheme accord-
ing to the original definition involving buyers and sellers of
services (Wunder, 2007), however it does involve “voluntary
transactions between service users and service providers that
are conditional on agreed rules of natural resource manage-
ment for generating offsite services” (Wunder, 2015). There-
fore the Watershared scheme is relevant to those interested
in the design of conservation incentive schemes such as
PES. In exchange for enrolling parcels of land in Water-
shared agreements, farmers receive varied forms of support
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(including fruit trees, bee boxes, irrigation material and
barbed wire) to help shift away from swidden agriculture
and improve livestock management (Bottazzi, Wiik, Cre-
spo, & Jones, 2018). More than 210,000 ha belonging to
4,500 families are under agreements (Asquith, 2016).

The study region: The Río Grande Valles Cruceños Nat-
ural Integrated Management Area (Spanish acronym ANMI)
is a 734,000-ha protected area in the Santa Cruz valleys of
Bolivia, created in 2007 (Figure 1a). There are regional dif-
ferences in rainfall which contribute to the existence of five
ecoregions which we simplified to three (Appendix S1, Sup-
porting Information): Tucuman-Bolivian Forest; Chaco; and
the dry valleys. The area is home to approximately 20,000
people scattered across small towns and hamlets. Most peo-
ple farm using a mixed system of staple crops including
maize and potato, small-scale vegetable cultivation, and live-
stock rearing. Cattle are grazed in the forests for at least part
of each year.

RCT: In 2010 Natura, motivated by a desire to know if
their intervention was effective, decided to roll out Water-
shared in 129 communities in the ANMI as an RCT to facili-
tate impact evaluation (Pynegar et al., 2018). Following
baseline data collection, including a socioeconomic survey
(Bottazzi et al., 2017), communities were randomly allocated
to control (n = 64) or treatment (n = 65), stratified by cattle
ownership and population density. However, when our team
later constructed community boundaries using national data
(National Institute of Agrarian Reform) and field validation
we found that two neighboring control communities were in
practice considered as one and did not have separate bound-
aries. Thus, we examine 128 communities (control n = 63
and treatment n = 65).

The randomization was consented to by municipal
leaders on the grounds that the program would subse-
quently be implemented in all communities (this
occurred in 2016 and the program now runs in both treat-
ment and control communities). Watershared agreements
were offered to households in treatment communities.
There were three levels of agreement with slightly differ-
ent conditions and incentives (SI 2). For example, the
strictest level (level 1) only applied to forest within
100 m of a stream and cattle had to be excluded as well
as deforestation stopped. The other two levels did not
require cattle exclusion (SI 2). While the analysis look-
ing at the impact of Watershared on water quality
(Pynegar et al., 2018), considered only level 1 agree-
ments, in this paper investigating the impact of Water-
shared on deforestation we include all levels.
Compliance for level 1 and 2 agreements was monitored
annually by Natura technicians walking transects within
the parcels under agreement. Level 3 agreements did not
receive active monitoring. In cases of gross noncompli-
ance, in-kind incentives (such as irrigation tubing or bee
hives) have been redistributed to the community. As with
many such schemes, not all land enrolled represented
additional conservation (additionality was ca. 13%; Bot-
tazzi et al., 2018) and there were barriers to entry leading
to higher uptake by households with formal land title,
larger homes, cattle, and stronger social connections
(Grillos, 2017). Uptake (percentage of a community area
under Watershared agreements) was highly variable
across the treated communities (Figure 1b), varying from
3 to 80% (median = 14%).
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FIGURE 1 (a) Map of study area (the Río Grande Valles Cruceños Natural Integrated Management Area, Spanish acronym: ANMI) showing the uptake of
the intervention (as % of community surface area). (b) The distribution of uptake between control (n = 63) and treatment (n = 65) communities
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Consent to randomization was granted by community
leaders in the area on the understanding that the intervention
would subsequently be implemented in all communities (this
general roll-out was conducted in 2016). The consent forms
used in baseline and endline are archived alongside the data
(Bottazzi et al., 2017). The endline social survey data used
in part of this analysis was assessed under the Bangor Uni-
versity Research Ethics Framework.

2.2 | Deforestation data and data validation

Deforestation data were extracted from the GFC product
(Hansen et al., 2013) that provides spatially explicit tree-
cover percentage for 2000 and annual tree-cover change for
2000 to 2016. Thus, “Treecover2000” and “lossyear” layers
were downloaded for tile 10S_070W and projected into
UTM zone 20S. A threshold of 30% of tree cover was
applied to generate a Forest/Non-Forest mask and then
applied to the lossyear layer to select loss occurring on that
mask only. The layers were combined into a deforestation
map, with the resulting pixels classified into four groups:
Forest stable; Non-Forest stable; Loss in the baseline period
(2000–2010); Loss in the RCT period (2011–2016). This
map was validated following (Olofsson et al., 2014) using
visual checks on a stratified random sample of 426 points
(see SI 3). Twenty-two points were excluded as poor-quality
time series imagery made validation impossible. Accuracy
of the remaining points (n = 404) was 94% (Table S3.1)
with user's accuracy ranging from 63% (for the loss in the
RCT period) to 97% (stable forest).

Spatial data processing (all code is available at https://
github.com/lecrabe/res2_bolivia_rct) was implemented
through R (R Core Team, 2017), OFGT (http://www.
openforis.org/tools), and the GDAL library (http://www.
gdal.org/). Accuracy assessment components (SI 3) were
developed using dedicated tools (Olofsson et al., 2014).

2.3 | Statistical analysis

2.3.1 | Analytical approach

Although Watershared agreements are individual (a farmer
will agree to enroll land or not), our deforestation analysis is
at community level for three reasons. First, the randomiza-
tion unit is the community. Second, although there are sha-
pefiles for enrolled parcels, we do not have shapefiles for
unenrolled parcels (either in control or in treatment commu-
nities), making finer-resolution comparison impossible.
Finally, an analysis looking at whether deforestation was
lower in enrolled parcels than other land would be highly
vulnerable to confounding by on-farm leakage (Pfaff &
Robalino, 2017).

Three further considerations impacted the analysis of
Watershared's effect on deforestation. First, while randomi-
zation exogenously allocated treatments, the voluntary
nature of uptake yielded nonrandom variation in uptake. We

controlled for factors that might influence both participation
and the outcome as much as possible by controlling for
uptake propensity (see below). Second, owing to this varia-
tion in uptake, there is a distinct difference between the ran-
domization, which is binary (control/treatment), and the
intervention, which is continuous (% area under agreements).
We therefore have two models: an ITT model evaluating the
effectiveness of Watershared as-implemented and a “contin-
uous-treatment” (CT) model to explore the potential effi-
cacy. Third, due to implementation error, a few households
living in treatment communities enrolled land they own in
control communities. Therefore there were control commu-
nities with enrolled land (see Figure 1b). We included all
communities in our analysis despite this contamination of
the control, accepting that it may introduce noise.

2.3.2 | Modeling the propensity for uptake of Watershared
agreements

We modeled uptake propensity by regressing % land area
enrolled in a treatment community against socioeconomic
predictors aggregated to community scale as means (We also
tested a model using medians, which explained 10% less var-
iation; this is not shown). We selected predictors based on
an analysis of household-level participation (Grillos, 2017),
derived from a baseline survey by Natura in 2010 in all
communities (Bottazzi et al., 2017). The predictors were:
wealth (land, cattle available); education of household head
(years); social embeddedness (generations a household has
been present, frequency of involvement in community
work); environmental attitudes (perceptions of forest value
and local water quality); and remoteness (travel time to the
nearest market—see SI 4 for more details). We used the pre-
dictions to create a propensity score for treatment and con-
trol communities, and used this score as a control variable in
our deforestation analysis. One community which lacked
baseline socioeconomic data and therefore a propensity
score, had to be discarded from the analysis.

An important assumption in our deforestation models is
that deviation from uptake propensity (i.e., uptake that can-
not be explained by predicted uptake) is independent of con-
founding factors. For this to be the case, some of the
unexplained variation in the uptake model would need to be
related to variation affecting uptake but not deforestation.
We suggest that such variation may be due to differences in
how the offer of the program was experienced across the
communities, for example by the timing of Natura's visits to
certain communities, the relationship between Natura tech-
nicians and communities, or the willingness of the commu-
nity leader to spread the word about Natura's visit. We
support our interpretation of our propensity model results
using households' answers to the question (asked of those
who did not take up agreements) “Why did you not join the
scheme” (n = 513).
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2.3.3 | Leakage

Leakage is a common concern in Payments for Ecosystem
Services schemes as pressures may be displaced rather than
eliminated (Alix-Garcia, Shapiro, & Sims, 2012; Börner
et al., 2017). It is well known that leakage poses challenges
for conservation evaluation (Pfaff & Robalino, 2017). As
noted, we controlled for within-community leakage by ana-
lyzing deforestation at the community scale (as deforestation
driven to areas near enrolled parcels would simply reduce
our impact estimate). We could not control for between-
community leakage, which, if preferentially occurring from
treatment to control, would bias our estimated impact
upward. However, we argue that such a bias is unlikely
because treated communities' neighbors are randomized
(thus the effect should cancel out). Also, local deforestation
is mostly due to small-scale conversion to agriculture for
local markets, so households are unlikely to clear land far
from their home.

2.3.4 | Modeling details

Our primary, ITT analysis compared deforestation between
treated and control communities regardless of the extent to
which Watershared agreements were signed. This estimates
the effectiveness of the Watershared intervention as rolled
out in the region.

To explore the potential efficacy of the intervention, we
further developed a “continuous treatment” (CT) model,
which has some analogy to “as-treated” models commonly
used in the medical trials literature. However, in our situa-
tion, treatment is continuous (% land area enrolled).

We followed published guidelines for analysis of inter-
vention effects in randomized trials (European Medicines
Agency, 2015). In addition to uptake propensity, we
included as control variables those used for initial stratifica-
tion of the control and treatment group (population and cattle
density), the baseline value of our continuous outcome mea-
sure (deforestation 2000–2010), and other geographical

variables expected a priori to be strongly associated with the
outcome (limited using a screening model; SI 5).

All our models were fitted using GAM (Wood, 2011) to
account for nonlinear relationships and nonnormal errors,
leading to our use of the Tweedie distribution family for
deforestation (percentage) and beta for uptake propensity
(proportion), all selected based on a priori expectation com-
bined with model comparisons for fit. The ITT and CT pre-
dictor set was identical apart from whether the intervention
was coded as a binary control/treatment variable or % uptake
across communities (see Table 1 for all predictors). In both
cases, the intervention variable was interacted with uptake
propensity, which would indicate whether treatment has an
effect above and beyond the effect of endogenous factors. In
other words, if there is no deforestation difference between
control and treatment communities with high predicted
uptake, it implies that the scheme has had no effect above
the “null” behavior under predisposing conditions. Other
plausible interactions between predictors were tested for sig-
nificance and included where necessary. The effect on the
impact evaluation exerted by data points with high leverage
(Cook's distance) was evaluated by repeating analysis with-
out them, which provided us with a more conservative esti-
mate of the effect size of the PES scheme.

Significance of predictors as well as variable selection
was determined using GAM internal Wald tests and by
allowing for shrinkage (Wood, 2017). Model performance
was examined by inspection of residuals (Faraway, 2006).
The effect size of the intervention as per the CT model was
approximated by predicting % deforestation in five scenarios
where % uptake was set at 0, 20, 40, 60, and 80%. For each
scenario, we made 30 plausible predictions of the effect of
the intervention based on the model confidence interval. The
percentages for each community were multiplied by its for-
est cover to attain deforestation in hectares, as well as an
overall % change in deforested hectares out of available for-
est in 2010.

All statistical analysis was undertaken with R (R Core
Team, 2017), using package mgcv (Wood, 2011, 2017). R

TABLE 1 Variables used to investigate Watershared intervention effect on deforestation rates in the intention-to-treat (ITT) and continuous-treatment
(CT) models

Variable Unit Model Inclusion reason Data source

Deforestation (2011–2016) % Both Response variable Global Forest Change v1.4a

Baseline deforestation (2000–2010) % Both Baseline data for response Global Forest Change v1.4a

Population density n/ha Both Stratification Baseline data collected by Natura in 2010

Forest cover % Both Hypothesis-based Global Forest Change v1.4a

Community area ha Both Control for large variability in
community size

Community boundary shapefile, generated by our team from
National Institute of Agrarian Reform data with field validation

Chaco (ecoregion) % Both Screened Ecoregion shapefile (see SI 1)

Slope � Both Screened USGS (2004 )

Uptake propensity % Both Endogeneity control Modeled based on data in Bottazzi et al. (2017)

Control/treatment 0/1 ITT Intervention Natura

Uptake % CT Intervention Shapefile showing Watershared agreements provided by Natura

a Global Forest Change data was accessed at http://earthenginepartners.appspot.com/science-2013-global-forest
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code with all data are available at [https://doi.org/10.6084/
m9.figshare.7418264].

3 | RESULTS

3.1 | Distribution of, and trends in, deforestation

Total deforestation in the baseline period (2000–2010) was
4,147 ha (±742 ha) but was variable across communities
(mean 1.2%, median 0.9%; Figure 2a). With the caveat that
any systematic difference between randomized cohorts is
necessarily due to chance and therefore invalidates the pre-
mise for frequentist significance tests, we note that there was
no significant difference (Wilcoxon rank sum test) in either
measure between control and treatment communities
(Figure 2b), supporting the visual inspection of balance
between control and treatment. The control and treatment
communities were also largely balanced in the potential
drivers of deforestation we identified (SI 6).

Communities with high baseline deforestation tended to
also have high deforestation during the intervention period,
however there was considerable scatter around this relationship
(Figure 2a). The total area of deforestation during the interven-
tion (2011–2016) was 6,042 ha (±3,933 ha); again, this was
variable across communities (mean 1.7%, median of 1.2%).
Considering the intervention period is shorter, this implies
increased overall deforestation in the intervention period.

3.2 | Modeling propensity of uptake in Watershared
agreements

Our model of uptake propensity explained 50% of uptake
(Figure S4.1a), with considerable and slightly biased scatter
around the 1:1 line. Testing different model family specifica-
tions and predictor interactions did not improve fit, suggest-
ing omitted variable bias; however control and treatment

communities were largely balanced in uptake propensity
(Figure S4.1b in SI4).

Responses to the question “Why did you not join the
scheme,” provide some evidence that the unexplained varia-
tion in uptake can be explained, at least in part, by noncon-
founding factors. Not having attended a sign-up meeting
was the most common reason (50%) given by nonpartici-
pants instead of for example, lack of interest (SI 7). While
not attending a meeting may be correlated with some con-
founders, it could also reflect variation in the way in which
the program was offered across the study area.

3.3 | ITT model (79.7% deviance explained—see SI 8)

ITT analysis revealed no significant difference overall
(i.e., intercept) between deforestation in control and treatment
communities after accounting for control variables including
uptake propensity (Figure 3). The slope of uptake propensity
varied between control and treatment: uptake propensity was
significant for the treatment communities but insignificant for
control communities (p = 0.016 vs. p = 0.11). For treatment
communities, the relationship suggested decreasing deforesta-
tion with increasing uptake propensity (Figure 4a). However,
following removal of data points with high leverage on model
outcomes (n = 3), there was no significant control/treatment
difference in the relationship between deforestation and uptake
propensity and therefore the effect is volatile (Figure 4b).

3.4 | Continuous-treatment model (80.3% deviance
explained—see SI 8)

The continuous-treatment model indicated a significant neg-
ative relationship between both increasing % uptake and %
uptake propensity (as interaction) and deforestation
(p = 0.008; Figure 5a; SI 8). For this model, removing the
data points with high leverage on model outputs did not
remove the treatment effect (Figure 5b). The treatment effect
is small. If an 80% uptake were achieved our models suggest

FIGURE 2 (a) Deforestation data for the baseline (2000–2010) and intervention (2011–2016) periods (dashed line = 1:1) and (b) their differences between
control and treatment communities. Horizontal line = median, hinges = 25th and 75th percentiles, and whiskers extend to 1.5 × interquartile ranges from
each hinge. Points represent data lying beyond this range
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this would result in a reduction of deforestation of just
670 ha compared with 0% uptake. This represents a reduc-
tion in deforestation rate from 1.58 ± 0.015% (1 SD) (with
0% uptake scenario) to 1.41 ± 0.042 (1 SD).

4 | DISCUSSION

4.1 | Did the Watershared intervention effectively slow
deforestation?

We did not detect a measurable impact of Watershared on
deforestation using the ITT model. This suggests that, as
implemented in the landscape, Watershared was not effec-
tive at slowing deforestation. While there is some evidence
that deforestation was reduced for communities with a
higher propensity to take up the scheme in treatment

communities (but not in control communities; Figure 4), this
effect was driven by three communities with high leverage.
Our exploration of efficacy (CT model) showed that defores-
tation decreased slightly with increasing uptake regardless of
uptake propensity, which suggests that improvement of
uptake rates could potentially lead to effective intervention.

Interpretation of our CT model rests on the assumption
that deviation from intended treatment (both uptake in control
communities, and some element of variation of uptake in trea-
ted communities) was independent of confounding factors
(McNamee, 2009). We are confident that confounding factors
did not drive the cases of uptake in control communities; they
were the result of an accident of geography (people living in
treatment communities who owned land in control communi-
ties) and limited monitoring of the RCT (they should not have
been allowed to enroll that land). The 50% of uptake variation

FIGURE 4 The intention-to-treat model suggests decreasing deforestation with increasing uptake propensity for treatment but not control communities when
all communities are included (a). However when three communities with high leverage on model results are discarded, there is no difference between control
and treatment cohorts (b). The rug shows the distribution of real data points

FIGURE 3 Difference in deforestation between control and treatment communities based on the intention-to-treat model with (full) and without (N – 3)
communities with high leverage on model results. Bars are standard errors
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we could not explain with our propensity score, while poten-
tially influenced by unobserved confounding factors, is also
plausibly due to differences in the way the scheme was
offered between communities. Opportunities to enroll land
may have varied because of timing of visits by Natura, or
links between technicians and community members affecting
how effectively news of the meetings spread in some commu-
nities, or chance (people being sick, or away). These possibili-
ties, although not directly monitored as part of this RCT, are
supported by our interviews with nonparticipants. Fifty per-
cent of respondents gave “did not attend meeting” as the rea-
son for not taking up the agreements.

The randomization increases confidence in our analysis.
Given that uptake propensity scores and preintervention
deforestation rates, inter alia, were balanced between control
and treatment communities, we can reasonably expect bal-
ance also in unobservable confounders. For example, treat-
ment communities with both high uptake propensity and
high uptake, can be expected to be balanced in the analysis
with similar control communities who would have taken up
the scheme if offered it. In the absence of being able to per-
fectly model propensity to take up the scheme, randomiza-
tion was therefore very useful for supporting causal
inference.

It is important to note that our estimated effect is very
small, and potentially trivial. If 80% uptake was achieved
across the landscape (unlikely to be achievable), our sce-
nario modeling suggests that deforestation would reduce
from 1.58% (with 0% uptake scenario) to 1.41%. The only
other published RCT evaluation of a PES program looked at
the impact of payments to households in Uganda over a
2-year period (Jayachandran et al., 2017) and found a much
larger reduction in deforestation rate (from 9.1% to just
4.2%). However, this project operated in a small area

(<99,300 ha vs. 489,400 ha here) with higher deforestation
rates. Low baseline deforestation inevitably reduces the
scope of impacts of a program seeking to reduce deforesta-
tion rates (Alix-Garcia et al., 2012).

4.2 | Might the Watershared program have had other
environmental impacts?

The Watershared program was introduced with the aim not
only of conserving forest cover, but also conserving biodi-
versity (potentially damaged by forest degradation) and
ensuring the supply of locally valued ecosystem services
(particularly the quality and quantity of downstream water;
Asquith, 2016). A recent analysis of the impact of the Water-
shared scheme on water quality using the same RCT design
as in this study showed that while excluding cattle from
water sources reduced Escherichia coli contamination at that
location, there was no difference between control and treat-
ment communities in the quality of their water (Pynegar
et al., 2018). Pynegar et al. (2018) suggest that the lack of
impact on water quality is because so little land was enrolled
in level 1 contracts, and the scheme involved no targeting
meaning that not all the land enrolled had the potential to
impact water quality. It is possible that the scheme may have
had a positive impact on local biodiversity through cattle
exclusion. However, although detailed data on amphibians,
reptiles and dung beetles were collected at endline, this data
has not yet been examined.

4.3 | How could the impact of the Watershared
program be increased?

Watershared already fulfils some criteria recently identified
as correlating with PES success (Börner et al., 2017) such as
compliance monitoring and in-kind payments. However, it

FIGURE 5 The results of the continuous-treatment model with (a) and without (b) three communities with high leverage on model results. The estimated
effect of uptake can be seen by comparing deforestation (color scale) between communities with similar uptake propensity (x-axis) but different actual uptake
(y-axis)
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did not deliver reductions in deforestation with the levels of
uptake which were achieved in the study area. We mention
above that low uptake in some communities may have been
driven at least partly by differences in how the intervention
was presented between communities, which could be benefi-
cial to explore in the future.

The value of the in-kind incentives is also likely to have
a role in uptake. While it is difficult to draw comparisons
across countries with different economies, the value of the
incentives in Watershared are low compared with other pro-
gram (the value of the incentives for the most restricting
agreements is $10 a hectare plus the equivalent of a $100
value joining bonus, but just $1 a hectare for the least
restricting agreements; SI 2). For comparison, Mexico's pro-
gram pays 27–36 USD ha−1 year−1 depending on forest type
(Muñoz-Piña, Guevara, Torres, & Braña, 2008), Costa Rica's
national program pays 45–163 USD ha−1 year−1 (Wunder,
Engel, & Pagiola, 2008), and the Ugandan PES program
paid 28 USD ha−1 year−1 (Jayachandran et al., 2017). Those
promoting Watershared argue that it works through nudging,
by emphasizing environmental norms and reciprocity rather
than paying the opportunity cost, so the level of incentives is
relatively unimportant (Asquith, 2016). There is evidence
that farmers enroll due to the perception that they or their
community will benefit from improved water quality
(Bottazzi et al., 2018). However both theory (Persson &
Alpízar, 2013) and empirical data (Arriagada, Sills, Patta-
nayak, & Ferraro, 2009) do predict low incentives lead to
low participation. We suggest that higher valued incentives
could increase uptake of Watershared.

Our evidence suggests that even if uptake could be
greatly increased, the reduction in deforestation would be
modest. A common problem in all PES schemes is adverse
selection; participants enroll land which is unlikely to be
cleared anyway, resulting in low additionality (Börner et al.,
2017). A recent analysis suggests that only 13% of the land
area enrolled in Watershared agreements has resulted in
additional conservation (Bottazzi et al., 2018). If higher pay-
ments could increase additionality as well as uptake this may
therefore increase the efficacy of the intervention.

We finally note that the impact of Watershared may also
increase and/or materialize with time, as found for a number of
PES schemes (Grima, Singh, Smetschka, & Ringhofer, 2016),
especially where livelihood changes are incentivized (Börner
et al., 2017). For example, many of theWatershared incentives
involve either waiting (fruit tree saplings reaching maturation)
or mastery (bee keeping, effective irrigation) before becoming
a financially viable alternative to the status quo.

4.4 | What can RCT contribute to conservation impact
evaluation?

Establishing causality in environmental policies by properly
identifying counterfactual outcomes is essential if environ-
mental policy decisions are to be based on evidence

(Ferraro & Hanauer, 2014). Quasi-experimental approaches
represent a huge advance over what passed for conservation
evaluations in the past, and their increasing use is very posi-
tive. However, post-hoc analysis is only as reliable as the
counterfactual scenario which can be created statistically and
recent evidence demonstrates how even supposedly robust
methods such as difference-in-differences can result in
biases in impact estimates (Daw & Hatfield, 2018). As much
as possible, therefore, conservation interventions should be
explicitly designed to allow robust evaluation (Ferraro &
Hanauer, 2014). Randomizing a conservation intervention
can help to facilitate an evaluation by reducing the role of
confounding factors, as well as providing a satisfactory pool
of counterfactuals in cases of nonrandom uptake.

The Watershared RCT suffered from some contamina-
tion of the control and considerable variability in uptake.
Despite this “noise”, the randomized design was an improve-
ment from a nonrandomized alternative. This is because
unobserved confounders driving uptake are likely to exist,
which quasi-experimental methods such as matching cannot
account for. The existence of a control balanced in all factors
for which we have data gives us confidence that the
observed effect (or lack of ) is not due to these unobserved
confounders. For example, there were low uptake rates in
the northern sector which would not have been expected a
priori, however randomization ensured that comparable con-
trols existed.

Despite calls for more randomized experiments in con-
servation impact evaluation, their use remains rare. Water-
shared is one of only three randomized impact evaluations
of landscape-scale conservation interventions we are aware
of (the others are: Jayachandran et al., 2017; Wilebore,
Voors, Bulte, Coomes, & Kontoleon, in press). There are
ethical and practical challenges meaning that full RCTs are
not always appropriate (Baylis et al., 2016; Deaton & Cart-
wright, 2018; Ferraro, 2011; Pynegar et al., 2018). How-
ever, where possible, randomization certainly offers
valuable opportunities for improving causal inference
(Ferraro, 2011). The Watershared RCT is the result of a
collaboration between practitioners, who had the foresight
to implement their intervention in a randomized design,
and researchers. More such collaborations would facilitate
a growth in the robust evaluations that conservation so des-
perately needs. We hope that conservation can avoid the
polarized debate surrounding the value of knowledge gen-
erated from RCTs in other fields (Ravallion, 2009), and
that randomization can be added to the conservationist
toolkit where appropriate.
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